
CS 1302, 2012: Lab 2: Parallel Reduction on a GPU    

      [Due Date: 15th July 2012] 

                  [Submission through github] 

Code tarball: lab2.tar 

In this hands-on lab, you will implement an optimized parallel reduction code on a GPU.  

 Reduction slides: 

http://developer.download.nvidia.com/compute/cuda/1_1/Website/p

rojects/reduction/doc/reduction.pdf 

 

We will ask you to modify several .cu (CUDA) files;  

Part 1 : Naive Parallel Reduction 

 

There are 5 CUDA program files (.cu files) in the downloaded tarball.  

 

 lab2_naive.cu: This file contains a naive implementation of parallel reduction. This 

implementation suffers from several inefficiencies. 

 lab2_stride.cu: You will implement an optimized implementation where 

consecutive threads are working on strides of the input array elements. Refer to Part 

2 for more information on how to implement this part. 

 lab2_sequential.cu: You will implement an optimized implementation where 

consecutive threads are working on consecutive elements of the input array. Refer to 

Part 3 for more information on how to implement this part. 

 

First of all, open lab2_naive.cu and find the function kernel0. From 

its __global__ specifier, we know that this is a GPU kernel. The content of this function is 

shown below. The arguments on Line 2 point to the beginning of 

the input and output arrays. The variable n is the number of input elements. 
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__global__ void 

kernel0 (dtype *input, dtype *output, unsigned int n) 

{ 

  __shared__  dtype scratch[MAX_THREADS]; 

 

  unsigned int bid = gridDim.x * blockIdx.y + blockIdx.x; 

  unsigned int i = bid * blockDim.x + threadIdx.x; 

 

  if(i < n) { 

    scratch[threadIdx.x] = input[i]; 

  } else { 

    scratch[threadIdx.x] = 0; 

  } 

http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/reduction/doc/reduction.pdf
http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/reduction/doc/reduction.pdf
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  __syncthreads (); 

 

  for(unsigned int s = 1; s < blockDim.x; s = s << 1) { 

    if((threadIdx.x % (2 * s)) == 0) { 

      scratch[threadIdx.x] += scratch[threadIdx.x + s]; 

    } 

    __syncthreads (); 

  } 

 

  if(threadIdx.x == 0) { 

    output[bid] = scratch[0]; 

  } 

} 

 

Line 4 declares an array, scratch, of shared memory. Recall that “shared memory” in 

CUDA parlance refers to the scratchpad memory that is shared by all threads in a thread 

block. The constant MAX_THREADS is defined to be the number of threads in each block; thus, 

declaring scratch to be of this size implies 1 word of shared memory per thread. 

 

Lines 6 and 7 compute a global ID for the thread. This ID is stored in i. This kind of 

calculation is hopefully familiar to you from the previous lab. 

In lines 9–14, each thread loads an element from the global array into the shared memory. 

In this case, i serves as both a global thread ID and the index of the input element,  

input[i], assigned to this thread. The call to __syncthreads() is a barrier for all threads 

within the same thread block. Here, it is used to ensure that all thread loads have completed 

prior to any computation on these data. 

Lines 16–21 perform the reduction within the thread block. The figure below shows the 

mapping of threads to shared memory array indices. 



 
Lines 23–25 show that only thread 0 in each block writes the sum back to the output array. 

Notice that the index into the output array is bid. That is, only thread 0 from each block 

produces a reduced output. By indexing the output array this way, we ensure that the result 

resides consecutively in memory. This is done so that during the next phase of reduction, 

data will again be accessed consecutively (coalesced memory access). 

1. i. Compile and run this code, which reports the input vector size, the time 

to execute the kernel, and an “effective bandwidth.” Record these data. 

Explain how the effective bandwidth is being calculated. 

ii. Refer CUDA Best Practices Guide 

(http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc

/CUDA_C_Best_Practices_Guide.pdf) section 5.2 from page 23 

iii. Observe the functioning of the "reduce_cpu" function. Why the reduction is 

not straight forward ? 

(http://en.wikipedia.org/wiki/Kahan_summation_algorithm) 

You are recommended to refresh your memory  on Floating point presentation 

and arithmetic: http://www.cs.cmu.edu/~213/lectures/04-floats.pdf 

iv. Is this code compute bound or memory bound or latency bound ? What 

is the maximum effective performance that the code can achieve? 

Part 2: Strided Access by Consecutive Threads 

The naive implementation has inefficiencies arising from divergent warps. In each 

successive iterations of the loop, the number of active threads per warp is halved, causing 

two problems: (a) divergent control flow between active threads and inactive threads, and 

http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Best_Practices_Guide.pdf
http://en.wikipedia.org/wiki/Kahan_summation_algorithm
http://www.cs.cmu.edu/~213/lectures/04-floats.pdf


(b) under-utilization of the threads in each warp, since every warp in the thread block needs 

to execute even though the number of active threads in each warp is decreasing. 

Therefore, we would like to change the code so that at each level of the reduction only 

consecutively numbered threads remain active even as the number of active threads 

decreases. The following figure illustrates this technique. 

 
2. Implement this scheme in kernel1 of lab2_stride.cu. Measure and record 

the resulting performance. How much faster than the initial code is this version? 

Hint: The kernel is very similar to the naive kernel. You should only need to modify Lines 

17–19 of the naive kernel. 

Part 3 : Sequential Access by Consecutive Threads 

Both of the previous kernels suffer from another inefficiency, known as bank conflicts. 

Without going into the gory details, bank conflicts essentially occur when the threads of a 

warp make strided accesses to shared memory. Thus, having a warp’s threads access 

consecutive words in global memory is also a good policy for shared memory. The most 

common way to prevent bank conflicts is to ensure that the threads of a warp access 

contiguous words in shared memory. 

For more information on bank conflicts, refer to the CUDA Programming Guide. 

This mapping of threads to shared memory indices is shown in the following figure. 

http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf


 
3. Implement this scheme in kernel2 of lab2_sequential.cu. Record the new 

effective bandwidth. 

 

 

 

Part 4 : First Add Before Reduce 

The above implementations all suffer from the fact that after each thread loads its global 

array element into the shared memory, half of them immediately become inactive and take 

no part in the actual computation. The kernel can be improved by using half the number of 

threads as before and having each thread loading 2 elements from the global array instead, 

and then summing them together before writing the result into the shared memory. 

This mapping of threads to shared memory indices is shown in the following figure. 



 
4. Implement this scheme and report the effective bandwidth. 

Part 5: Algorithm cascading 

In this part of the lab, instead of having each thread load 2 elements from the global array, 

have them load multiple elements and then sum them all up before placing the result into 

the shared memory. 

The reduction tutorial slides referred to this technique as “algorithm cascading.” We gave a 

theoretical reason for this in terms of parallel efficiency during one of the classes. 

In the main function, we have restricted the maximum number of threads to 256 AND the 

maximum number of thread blocks to 64. This means that there are at most 16384 threads. 

If the input size is 8388608 elements, then each thread will have to sum up 512 elements 

from the global array before storing the sum into the shared memory. 

5. Implement this scheme and report the effective bandwidth. 

 


