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 Chapter 1. 

Introduction 

Optimizing CUDA Memory 
Management in Matrix 
Transpose 

This document discusses aspects of CUDA application performance related to 

efficient use of GPU memories and data management as applied to a matrix 

transpose.  In particular, this document discusses the following issues of memory 

usage: 

� coalescing data transfers to and from global memory 

� shared memory bank conflicts 

� partition camping 

There are other aspects of efficient memory usage not discussed here, such as 

data transfers between host and device, as well as constant and texture memories. 

Both coalescing and partition camping deal with data transfers between global 

device and on-chip memories, while shared memory bank conflicts deal with on-

chip shared memory. 

The reader should be familiar with basic CUDA programming concepts such as 

kernels, threads, and blocks, as well as a basic understanding of the different 

memory spaces accessible by CUDA threads.  A good introduction to CUDA 

programming is given in the CUDA Programming Guide as well as other 

resources on CUDA Zone (http://www.nvidia.com/cuda). 

The matrix transpose problem statement is given next, followed by a brief 

discussion of performance metrics, after which the remainder of the document 

presents a sequence of CUDA matrix transpose kernels which progressively 

address various performance bottlenecks.    

 Matrix Transpose Characteristics 

In this document we optimize a transpose of a matrix of floats that operates out-

of-place, i.e. the input and output matrices address separate memory locations.  

For simplicity and brevity in presentation, we consider only square matrices 

whose dimensions are integral multiples of 32 on a side, the tile size, through the 
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document. However, modifications of code required to accommodate matrices of 

arbitrary size are straightforward.  

 Code Highlights and Performance Measurements 

The host code for all the transpose cases is given in Appendix A.  The host code 

performs typical tasks: data allocation and transfer between host and device, the 

launching and timing of several kernels, result validation, and the deallocation of 

host and device memory. 

In addition to different matrix transposes, we run kernels that execute matrix 

copies.  The performance of the matrix copies serve as benchmarks that we 

would like the matrix transpose to achieve.   

For both the matrix copy and transpose, the relevant performance metric is the 

effective bandwidth, calculated in GB/s as twice the size of the matrix – once for 

reading the matrix and once for writing – divided by the time of execution.  Since 

timing is performed in loops executed NUM_REPS times, which is defined at the 

top of the code, the effective bandwidth is also normalized by NUM_REPS. 

Looping NUM_REPS times over code for measurement is done in two different 

fashions: looping over kernel launches, and looping within the kernel over the 

load and stores.  The host code for these measurements is given below: 

// take measurements for loop over kernel launches 

    cudaEventRecord(start, 0); 

    for (int i=0; i < NUM_REPS; i++) { 

      kernel<<<grid, threads>>>(d_odata, d_idata,size_x,size_y,1); 

    } 

    cudaEventRecord(stop, 0); 

    cudaEventSynchronize(stop); 

    float outerTime; 

    cudaEventElapsedTime(&outerTime, start, stop);     

 

    ... 

 

 // take measurements for loop inside kernel 

    cudaEventRecord(start, 0); 

    kernel<<<grid,threads>>> 

        (d_odata, d_idata, size_x, size_y, NUM_REPS); 

    cudaEventRecord(stop, 0); 

    cudaEventSynchronize(stop); 

    float innerTime; 

    cudaEventElapsedTime(&innerTime, start, stop);     

 

The first timing is done by a for loop in the host code, the second by passing 

NUM_REPS as a parameter to the kernel.  A simple copy kernel is shown below:  

 

__global__ void copy(float *odata, float* idata, int width,  

                                     int height, int nreps) 

{ 

  int xIndex = blockIdx.x*TILE_DIM + threadIdx.x; 

  int yIndex = blockIdx.y*TILE_DIM + threadIdx.y; 

 

  int index  = xIndex + width*yIndex; 
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  for (int r=0; r < nreps; r++) { 

    for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) { 

      odata[index+i*width] = idata[index+i*width]; 

    } 

  } 

} 

 

The difference between these two timings is the overhead of the kernel launch, 

which should be consistent between different kernels, as well as the time spent in 

calculating the matrix indices at the beginning of each kernel.  In addition, 

looping over kernel launches also acts as a synchronization mechanism.  When 

the kernel is launched multiple times from a loop in host code, all blocks from 

one kernel launch must complete execution before any block of a following 

launch can begin.  As a result the set of active blocks and hence memory access 

patterns resets every loop iteration.  When the loop is performed within the 

kernels, the set of active thread blocks has more opportunity to diverge as 

execution progresses through the timing loop.   

Both methods of timing code provide useful measurements, the first indicating 

what one would typically use as an overall performance metric, and the second as 

a means of comparing the data movement times between kernels. 

In the following section we present different kernels called from the host code, 

each addressing different performance issues.  All kernels in this study launch 

thread blocks of dimension 32x8, where each block transposes (or copies) a tile 

of dimension 32x32.  As such, the parameters TILE_DIM and BLOCK_ROWS 

are set to 32 and 8, respectively.  Using a thread block with fewer threads than 

elements in a tile is advantageous for the matrix transpose in that each thread 

transposes several matrix elements, four in our case, and much of the cost of 

calculating the indices is amortized over these elements. 
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2. Copy and Transpose Kernels 

Simple copy 

The first two cases we consider are a naïve transpose and simple copy, each 

using blocks of 32x8 threads on a 32x32 matrix tiles.  The copy kernel was given 

in the previous section, and shows the basic layout for all of the kernels.  The 

first two arguments odata and idata are pointers to the input and output 

matrices, width and height are the matrix x and y dimensions, and nreps 

determines how many times the loop over data movement between matrices is 

performed.  In this kernel, the global 2D matrix indices xIndex and yIndex 

are calculated, which are in turn used to calculate index, the 1D index used by 

each thread to access matrix elements.   The loop over i adds additional offsets 

to index so that each thread copies multiple elements of the array, and the loop 

over r is used for timing the data transfer from input to output array multiple 

times. 

Naïve transpose 

The naïve transpose: 

__global__ void transposeNaive(float *odata, float* idata,  

                         int width, int height, int nreps) 

{ 

  int xIndex = blockIdx.x*TILE_DIM + threadIdx.x; 

  int yIndex = blockIdx.y*TILE_DIM + threadIdx.y; 

 

  int index_in  = xIndex + width * yIndex; 

  int index_out = yIndex + height * xIndex; 

  for (int r=0; r < nreps; r++) { 

    for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) { 

      odata[index_out+i] = idata[index_in+i*width]; 

    } 

  } 

} 

is nearly identical to the copy kernel above, with the exception that  index, the 

array index used to access elements in both input and output arrays for the copy 

kernel, is replaced by the two indices index_in (equivalent to index in the 

copy kernel), and index_out.  Each thread executing the kernel transposes 

four elements from one column of the input matrix to their transposed locations 

in one row of the output matrix.   
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The performance of these two kernels on a 2048x2048 matrix using a GTX280 is 

given in the following table: 

 

 Effective Bandwidth (GB/s) 
2048x2048, GTX 280 

 Loop over kernel Loop in kernel 

Simple Copy 96.9 81.6 

Naïve Transpose 2.2 2.2 

 

The minor differences in code between the copy and naïve transpose kernels have 

a profound effect on performance - nearly two orders of magnitude.  This brings 

us to our first optimization technique: global memory coalescing.  

Coalesced Transpose 

Because device memory has a much higher latency and lower bandwidth than on-

chip memory, special attention must be paid to how global memory accesses are 

performed, in our case loading data from idata and storing data in odata.  All 

global memory accesses by a half-warp of threads can be coalesced into one or 

two transactions if certain criteria are met.  These criteria depend on the compute 

capability of the device, which can be determined, for example, by running the 

deviceQuery SDK example.  For compute capabilities of 1.0 and 1.1, the 

following conditions are required for coalescing: 

� threads must access either 32- 64-, or 128-bit words, resulting in either one 

transaction (for 32- and 64-bit words) or two transactions (for 128-bit words) 

� All 16 words must lie in the same aligned segment of 64 or 128 bytes for 32- 

and 64-bit words, and for 128-bit words the data must lie in two contiguous 

128 byte aligned segments 

� The threads need to access words in sequence.  If the k-th thread is to access 

a word, it must access the k-th word, although not all threads need to 

participate. 

For devices with compute capabilities of 1.2, requirements for coalescing are 

relaxed.  Coalescing into a single transaction can occur when data lies in 32-, 64-, 

and 128-byte aligned segments, regardless of the access pattern by threads within 

the segment.  In general, if a half-warp of threads access N segments of memory, 

N memory transactions are issued. 

In a nutshell, if a memory access coalesces on a device of compute capability 1.0 

or 1.1, then it will coalesce on a device of compute capability 1.2 and higher.  If 

it doesn’t coalesce on a device of compute capability 1.0 or 1.1, then it may 
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either completely coalesce or perhaps result in a reduced number of memory 

transactions, on a device of compute capability 1.2 or higher. 

For both the simple copy and naïve transpose, all loads from idata  coalesce on 

devices with any of the compute capabilities discussed above.  For each iteration 

within the i-loop, each half warp reads 16 contiguous 32-bit words, or one half 

of a row of a tile.  Allocating device memory through cudaMalloc() and 

choosing TILE_DIM to be a multiple of 16 ensures alignment with a segment of 

memory, therefore all loads are coalesced. 

Coalescing behavior differs between the simple copy and naïve transpose kernels 

when writing to odata.  For the simple copy, during each iteration of the i-

loop, a half warp writes one half of a row of a tile in a coalesced manner.  In the 

case of the naïve transpose, for each iteration of the i-loop a half warp writes one 

half of a column of floats to different segments of memory, resulting in 16 

separate memory transactions, regardless of the compute capability.   

The way to avoid uncoalesced global memory access is to read the data into 

shared memory, and have each half warp access noncontiguous locations in 

shared memory in order to write contiguous data to odata.  There is no 

performance penalty for noncontiguous access patters in shared memory as there 

is in global memory, however the above procedure requires that each element in 

a tile be accessed by different threads, so a __synchthreads() call is 

required to ensure that all reads from idata to shared memory have completed 

before writes from shared memory to odata commence.  A coalesced transpose 

is listed below: 

__global__ void transposeCoalesced(float *odata,  

            float *idata, int width, int height, int nreps) 

{ 

  __shared__ float tile[TILE_DIM][TILE_DIM]; 

 

  int xIndex = blockIdx.x*TILE_DIM + threadIdx.x; 

  int yIndex = blockIdx.y*TILE_DIM + threadIdx.y;   

  int index_in = xIndex + (yIndex)*width; 

 

  xIndex = blockIdx.y * TILE_DIM + threadIdx.x; 

  yIndex = blockIdx.x * TILE_DIM + threadIdx.y; 

  int index_out = xIndex + (yIndex)*height; 

 

  for (int r=0; r < nreps; r++) { 

    for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) { 

      tile[threadIdx.y+i][threadIdx.x] =  

        idata[index_in+i*width]; 

    } 

   

    __syncthreads(); 

   

    for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) { 

      odata[index_out+i*height] =  

        tile[threadIdx.x][threadIdx.y+i]; 

    } 

  } 

} 

A depiction of the data flow of a half warp in the coalesced transpose kernel is 

given below.  The half warp writes four half rows of the idata matrix tile to the 
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shared memory 32x32 array “tile” indicated by the yellow line segments.  

After a __syncthreads() call to ensure all writes to tile are completed, 

the half warp writes four half columns of tile to four half rows of an odata 

matrix tile, indicated by the green line segments.   

 

 

 

 

 

With the improved access pattern to memory in odata, the writes are coalesced 

and we see an improved performance: 

 

 Effective Bandwidth (GB/s) 
2048x2048, GTX 280 

 Loop over kernel Loop in kernel 

Simple Copy 96.9 81.6 

Naïve Transpose 2.2 2.2 

Coalesced Transpose 16.5 17.1 

 

While there is a dramatic increase in effective bandwidth of the coalesced 

transpose over the naïve transpose, there still remains a large performance gap 

between the coalesced transpose and the copy.  The additional indexing required 

by the transpose doesn’t appear to be the cause for the performance gap, since the 

results in the “Loop in kernel” column, where the index calculation is amortized 

over 100 iterations of the data movement, also shows a large performance 

difference.  One possible cause of this performance gap is the synchronization 

barrier required in the coalesced transpose.  This can be easily assessed using the 

following copy kernel which utilizes shared memory and contains a 

__syncthreads() call: 

__global__ void copySharedMem(float *odata, float *idata,  

                          int width, int height, int nreps) 

{ 

idata odata 

tile 
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  __shared__ float tile[TILE_DIM][TILE_DIM]; 

 

  int xIndex = blockIdx.x*TILE_DIM + threadIdx.x; 

  int yIndex = blockIdx.y*TILE_DIM + threadIdx.y; 

   

  int index  = xIndex + width*yIndex; 

  for (int r=0; r < nreps; r++) { 

    for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) { 

      tile[threadIdx.y+i][threadIdx.x] =  

        idata[index+i*width]; 

    } 

   

    __syncthreads(); 

   

    for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) { 

      odata[index+i*width] =  

        tile[threadIdx.y+i][threadIdx.x]; 

    } 

  } 

} 

 

The __syncthreads() call is not needed for successful execution of this 

kernel, as threads do not share data, and is included only to assess the cost of the 

synchronization barrier in the coalesced transpose.  The results are shown in the 

following modified table: 

 

 Effective Bandwidth (GB/s) 
2048x2048, GTX 280 

 Loop over kernel Loop in kernel 

Simple Copy 96.9 81.6 

Shared Memory Copy 80.9 81.1 

Naïve Transpose 2.2 2.2 

Coalesced Transpose 16.5 17.1 

 

The shared memory copy results seem to suggest that the use of shared memory 

with a synchronization barrier has little effect on the performance, certainly as far 

as the “Loop in kernel” column indicates when comparing the simple copy and 

shared memory copy.  When comparing the coalesced transpose and shared 

memory copy kernels, however, there is one performance bottleneck regarding 

how shared memory is accessed that needs to be addressed: shared memory bank 

conflicts. 
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Shared memory bank conflicts 

Shared memory is divided into 16 equally-sized memory modules, called banks, 

which are organized such that successive 32-bit words are assigned to successive 

banks.   These banks can be accessed simultaneously, and to achieve maximum 

bandwidth to and from shared memory the threads in a half warp should access 

shared memory associated with different banks.  The exception to this rule is 

when all threads in a half warp read the same shared memory address, which 

results in a broadcast where the data at that address is sent to all threads of the 

half warp in one transaction.    

One can use the warp_serialize flag when profiling CUDA applications to 

determine whether shared memory bank conflicts occur in any kernel.  In 

general, this flag also reflects use of atomics and constant memory, however 

neither of these are present in our example. 

The coalesced transpose uses a 32x32 shared memory array of floats.  For this 

sized array, all data in columns k and k+16 are mapped to the same bank.  As a 

result, when writing partial columns from tile in shared memory to rows in 

odata the half warp experiences a 16-way bank conflict and serializes the 

request.  A simple to avoid this conflict is to pad the shared memory array by one 

column: 

  __shared__ float tile[TILE_DIM][TILE_DIM+1]; 

The padding does not affect shared memory bank access pattern when writing a 

half warp to shared memory, which remains conflict free, but by adding a single 

column now the access of a half warp of data in a column is also conflict free.  

The performance of the kernel, now coalesced and memory bank conflict free, is 

added to our table below: 

 Effective Bandwidth (GB/s) 
2048x2048, GTX 280 

 Loop over kernel Loop in kernel 

Simple Copy 96.9 81.6 

Shared Memory Copy 80.9 81.1 

Naïve Transpose 2.2 2.2 

Coalesced Transpose 16.5 17.1 

Bank Conflict Free Transpose 16.6 17.2 

 

While padding the shared memory array did eliminate shared memory bank 

conflicts, as was confirmed by checking the warp_serialize flag with the 

CUDA profiler, it has little effect (when implemented at this stage) on 

performance.  As a result, there is still a large performance gap between the 

coalesced and shared memory bank conflict free transpose and the shared 
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memory copy.  In the next section we break the transpose into components to 

determine the cause for the performance degradation. 

 Decomposing Transpose 

There is over a factor of four performance difference between the best optimized 

transpose and the shared memory copy in the table above.  This is the case not 

only for measurements which loop over the kernel launches, but also for 

measurements obtained from looping within the kernel where the costs associated 

with the additional index calculations are amortized over the 100 iterations.   

To investigate further, we revisit the data flow for the transpose and compare it to 

that of the copy, both of which are indicated in the top portion of the diagram 

below. There are essentially two differences between the copy code and the 

transpose: transposing the data within a tile, and writing data to transposed tile.  

We can isolate the performance between each of these two components by 

implementing two kernels that individually perform just one of these 

components.  As indicated in the bottom half of the diagram below, the fine-

grained transpose kernel transposes the data within a tile, but writes the tile to the 

location that a copy would write the tile.  The coarse-grained transpose kernel 

writes the tile to the transposed location in the odata matrix, but does not 

transpose the data within the tile. 

 

 

idata odata 

tile 
copy 

transpose 

coarse-grained 
transpose 

fine-grained 
transpose 
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The source code for these two kernels is given below: 

__global__ void transposeFineGrained(float *odata,  

           float *idata, int width, int height,  int nreps) 

{ 

  __shared__ float block[TILE_DIM][TILE_DIM+1]; 

 

  int xIndex = blockIdx.x * TILE_DIM + threadIdx.x; 

  int yIndex = blockIdx.y * TILE_DIM + threadIdx.y; 

  int index = xIndex + (yIndex)*width; 

 

  for (int r=0; r<nreps; r++) { 

    for (int i=0; i < TILE_DIM; i += BLOCK_ROWS) { 

      block[threadIdx.y+i][threadIdx.x] =  

        idata[index+i*width]; 

    }   

      

    __syncthreads(); 

 

    for (int i=0; i < TILE_DIM; i += BLOCK_ROWS) { 

      odata[index+i*height] =  

        block[threadIdx.x][threadIdx.y+i]; 

    } 

  } 

} 

 

 

__global__ void transposeCoarseGrained(float *odata,  

      float *idata, int width, int height, int nreps) 

{ 

  __shared__ float block[TILE_DIM][TILE_DIM+1]; 

 

  int xIndex = blockIdx.x * TILE_DIM + threadIdx.x; 

  int yIndex = blockIdx.y * TILE_DIM + threadIdx.y; 

  int index_in = xIndex + (yIndex)*width; 

 

  xIndex = blockIdx.y * TILE_DIM + threadIdx.x; 

  yIndex = blockIdx.x * TILE_DIM + threadIdx.y; 

  int index_out = xIndex + (yIndex)*height; 

 

  for (int r=0; r<nreps; r++) { 

    for (int i=0; i<TILE_DIM; i += BLOCK_ROWS) { 

      block[threadIdx.y+i][threadIdx.x] =  

        idata[index_in+i*width]; 

    } 

   

    __syncthreads(); 

 

    for (int i=0; i<TILE_DIM; i += BLOCK_ROWS) { 

      odata[index_out+i*height] =  

        block[threadIdx.y+i][threadIdx.x]; 

    } 

  } 

} 
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Note that the fine- and coarse-grained kernels are not actual transposes since in 

either case odata is not a transpose of idata, but as you will see they are 

useful in analyzing performance bottlenecks.  The performance results for these 

two cases are added to our table below: 

 

 Effective Bandwidth (GB/s) 
2048x2048, GTX 280 

 Loop over kernel Loop in kernel 

Simple Copy 96.9 81.6 

Shared Memory Copy 80.9 81.1 

Naïve Transpose 2.2 2.2 

Coalesced Transpose 16.5 17.1 

Bank Conflict Free Transpose 16.6 17.2 

Fine-grained Transpose 80.4 81.5 

Coarse-grained Transpose 16.7 17.1 

 

The fine-grained transpose has performance similar to the shared memory copy, 

whereas the coarse-grained transpose has roughly the performance of the 

coalesced and bank conflict free transposes.  Thus the performance bottleneck 

lies in writing data to the transposed location in global memory.  Just as shared 

memory performance can be degraded via bank conflicts, an analogous 

performance degradation can occur with global memory access through partition 

camping, which we investigate next. 

Partition Camping 

Just as shared memory is divided into 16 banks of 32-bit width, global memory is 

divided into either 6 partitions (on 8- and 9-series GPUs) or 8 partitions (on 200- 

and 10-series GPUs) of 256-byte width.  We previously discussed that to use 

shared memory effectively, threads within a half warp should access different 

banks so that these accesses can occur simultaneously.  If threads within a half 

warp access shared memory though only a few banks, then bank conflicts occur.   

To use global memory effectively, concurrent accesses to global memory by all 

active warps should be divided evenly amongst partitions.  The term partition 

camping is used to describe the case when global memory accesses are directed 

through a subset of partitions, causing requests to queue up at some partitions 

while other partitions go unused. 
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While coalescing concerns global memory accesses within a half warp, partition 

camping concerns global memory accesses amongst active half warps.  Since 

partition camping concerns how active thread blocks behave, the issue of how 

thread blocks are scheduled on multiprocessors is important. When a kernel is 

launched, the order in which blocks are assigned to multiprocessors is determined 

by the one-dimensional block ID defined as: 

bid = blockIdx.x + gridDim.x*blockIdx.y; 

which is a row-major ordering of the blocks in the grid.  Once maximum 

occupancy is reached, additional blocks are assigned to multiprocessors as 

needed.  How quickly and the order in which blocks complete cannot be 

determined, so active blocks are initially contiguous but become less contiguous 

as execution of the kernel progresses.    

If we return to our matrix transpose and look at how tiles in our 2048x2048 

matrices map to partitions on a GTX 280, as depicted in the figure below, we 

immediately see that partition camping is a problem.   

 

With 8 partitions of 256-byte width, all data in strides of 2048 bytes (or 512 

floats) map to the same partition.  Any float matrix with an integral multiple of 

512 columns, such as our 2048x2048 matrix, will contain columns whose 

elements map to a single partition.  With tiles of 32x32 floats (or 128x128 bytes), 

whose one-dimensional block IDs are shown in the figure, all the data within the 

first two columns of tiles map to the same partition, and likewise for other pairs 

of tile columns (assuming the matrices are aligned to a partition segment).   

Combining how the matrix elements map to partitions, and how blocks are 

scheduled, we can see that concurrent blocks will be accessing tiles row-wise in 

idata which will be roughly equally distributed amongst partitions, however 

these blocks will access tiles column-wise in odata which will typically access 

global memory through just a few partitions.   

Having diagnosed the problem as partition camping, the question now turns to 

what can be done about it.  Just as with shared memory, padding is an option.  

Adding an additional 64 columns (one partition width) to odata will cause rows 

of a tile to map sequentially to different partitions.  However, such padding can 

become prohibitive to certain applications.  There is a simpler solution that 

essentially involves rescheduling how blocks are executed.   
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Diagonal block reordering 

While the programmer does not have direct control of the order in which blocks 

are scheduled, which is determined by the value of the automatic kernel variable 

blockIdx, the programmer does have the flexibility in how to interpret the 

components of blockIdx.  Given how the components blockIdx are named, 

i.e. x and y, one generally assumes these components refer to a cartesian 

coordinate system.  This does not need to be the case, however, and one can 

choose otherwise.  Within the cartesian interpretation one could swap the roles of 

these two components, which would eliminate the partition camping problem in 

writing to odata, however this would merely move the problem to reading data 

from idata.  

One way to avoid partition camping in both reading from idata and writing to 

odata is to use a diagonal interpretation of the components of blockIdx: the 

y component represents different diagonal slices of tiles through the matrix and 

the x component indicates the distance along each diagonal.  Both cartesian and 

diagonal interpretations of blockIdx components are shown in the top portion 

of the diagram below for a 4x4-block matrix, along with the resulting one-

dimensional block ID on the bottom. 
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Before we discuss the merits of using the diagonal interpretation of blockIdx 

components in the matrix transpose, we briefly mention how it can be efficiently 

implemented using a mapping of coordinates.  This technique is useful when 

writing new kernels, but even more so when modifying existing kernels to use 

diagonal (or other) interpretations of blockIdx fields.  If blockIdx.x and 

blockIdx.y represent the diagonal coordinates, then (for block-square 

matrixes) the corresponding cartesian coordinates are given by the following 

mapping: 

blockIdx_y = blockIdx.x; 

blockIdx_x = (blockIdx.x+blockIdx.y)%gridDim.x; 

One would simply include the previous two lines of code at the beginning of the 

kernel, and write the kernel assuming the cartesian interpretation of blockIdx 

fields, except using blockIdx_x and blockIdx_y in place of blockIdx.x 

and blockIdx.y, respectively, throughout the kernel.  This is precisely what is 

done in the transposeDiagonal kernel below: 

 

__global__ void transposeDiagonal(float *odata,  

            float *idata, int width, int height, int nreps) 

{ 

  __shared__ float tile[TILE_DIM][TILE_DIM+1]; 

 

  int blockIdx_x, blockIdx_y; 

 

  // diagonal reordering 

  if (width == height) { 

    blockIdx_y = blockIdx.x; 

    blockIdx_x = (blockIdx.x+blockIdx.y)%gridDim.x; 

  } else { 

    int bid = blockIdx.x + gridDim.x*blockIdx.y; 

    blockIdx_y = bid%gridDim.y; 

    blockIdx_x = ((bid/gridDim.y)+blockIdx_y)%gridDim.x; 

  }     

 

  int xIndex = blockIdx_x*TILE_DIM + threadIdx.x; 

  int yIndex = blockIdx_y*TILE_DIM + threadIdx.y;   

  int index_in = xIndex + (yIndex)*width; 

 

  xIndex = blockIdx_y*TILE_DIM + threadIdx.x; 

  yIndex = blockIdx_x*TILE_DIM + threadIdx.y; 

  int index_out = xIndex + (yIndex)*height; 

 

  for (int r=0; r < nreps; r++) { 

    for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) { 

      tile[threadIdx.y+i][threadIdx.x] =  

        idata[index_in+i*width]; 

    } 

   

    __syncthreads(); 

   

    for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) { 

      odata[index_out+i*height] =  

        tile[threadIdx.x][threadIdx.y+i]; 

    } 

  } 

} 
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Here we allow for both square and nonsquare matrices.  The mapping for 

nonsquare matrices can be used in the general case, however the simpler 

expressions for square matrices evaluate quicker and are preferable when 

appropriate. 

If we revisit our 2048x2048 matrix in the figure below, we can see how the 

diagonal reordering solves the partition camping problem.  When reading from 

idata and writing to odata in the diagonal case, pairs of tiles cycle through 

partitions just as in the cartesian case when reading data from idata. 

 

 

The performance of the diagonal kernel in the table below reflects this.  The 

bandwidth measured when looping within the kernel over the read and writes to 

global memory is within a few percent of the shared memory copy.  When 

looping over the kernel, the performance degrades slightly, likely due to 

additional computation involved in calculating blockIdx_x and 

blockIdx_y.  However, even with this performance degradation the diagonal 

transpose has over four times the bandwidth of the other complete transposes.   
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 Effective Bandwidth (GB/s) 
2048x2048, GTX 280 

 Loop over kernel Loop in kernel 

Simple Copy 96.9 81.6 

Shared Memory Copy 80.9 81.1 

Naïve Transpose 2.2 2.2 

Coalesced Transpose 16.5 17.1 

Bank Conflict Free Transpose 16.6 17.2 

Fine-grained Transpose 80.4 81.5 

Coarse-grained Transpose 16.7 17.1 

Diagonal 69.5 78.3 
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 Summary 

In this paper we have discussed several aspects of GPU memory management 

through a sequence of progressively optimized transpose kernels.  The sequence 

is typical of performance tuning using CUDA.  The first step in improving 

effective bandwidth is to ensure that global memory accesses are coalesced, 

which can improve performance by an order of magnitude. 

The second step was to look at shared memory bank conflicts.  In this study 

eliminating shared memory bank conflicts appeared to have little effect on 

performance, however that is largely due to when it was applied in relation to 

other optimizations:  the effect of bank conflicts were masked by partition 

camping.  By removing the padding of the shared memory array in the diagonally 

reordered transpose, one can see that bank conflicts have a sizeable effect on 

performance. 

While coalescing and bank conflicts will remain relatively consistent as the 

problem size varies, partition camping is dependent on problem size, and varies 

across different generations of hardware.  The particular sized matrix in this 

example will experience far less performance degradation due to partition 

camping on a G80-based card due to the different number of partitions: 6 

partitions on the 8-series rather than 8 on the 200-series. 

The final version of the transpose kernel by no means represents the highest level 

of optimization that can be achieved.  Tile size, number of elements per thread, 

and instruction optimizations can improve performance, both of the transpose 

and the copy kernels. But in the study we merely focused on the issues that have 

the largest impact. 
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 Appendix A - Host Code 

#include <stdio.h> 

 

// kernels transpose/copy a tile of TILE_DIM x TILE_DIM elements 

// using a TILE_DIM x BLOCK_ROWS thread block, so that each thread 

// transposes TILE_DIM/BLOCK_ROWS elements.  TILE_DIM must be an  

// integral multiple of BLOCK_ROWS 

 

#define TILE_DIM 32 

#define BLOCK_ROWS 8 

 

// Number of repetitions used for timing.   

 

#define NUM_REPS  100 

 

int 

main( int argc, char** argv)  

{ 

  // set matrix size 

  const int size_x = 2048, size_y = 2048;  

 

  // kernel pointer and descriptor 

  void (*kernel)(float *, float *, int, int, int); 

  char *kernelName; 

 

  // execution configuration parameters 

  dim3 grid(size_x/TILE_DIM, size_y/TILE_DIM),   

       threads(TILE_DIM,BLOCK_ROWS); 

 

  // CUDA events 

  cudaEvent_t start, stop; 

 

  // size of memory required to store the matrix 

  const int mem_size = sizeof(float) * size_x*size_y; 

 

  // allocate host memory 

  float *h_idata = (float*) malloc(mem_size); 

  float *h_odata = (float*) malloc(mem_size); 

  float *transposeGold = (float *) malloc(mem_size);   

  float *gold; 

 

  // allocate device memory 

  float *d_idata, *d_odata; 

  cudaMalloc( (void**) &d_idata, mem_size); 

  cudaMalloc( (void**) &d_odata, mem_size); 

 

  // initalize host data 

  for(int i = 0; i < (size_x*size_y); ++i) 

    h_idata[i] = (float) i; 

   

  // copy host data to device 

  cudaMemcpy(d_idata, h_idata, mem_size,    

             cudaMemcpyHostToDevice ); 
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  // Compute reference transpose solution 

  computeTransposeGold(transposeGold, h_idata, size_x, size_y); 

 

  // print out common data for all kernels 

  printf("\nMatrix size: %dx%d, tile: %dx%d, block: %dx%d\n\n",  

  size_x, size_y, TILE_DIM, TILE_DIM, TILE_DIM, BLOCK_ROWS); 

   

  printf("Kernel\t\t\tLoop over kernel\tLoop within kernel\n"); 

  printf("------\t\t\t----------------\t------------------\n"); 

 

  // 

  // loop over different kernels 

  // 

 

  for (int k = 0; k<8; k++) { 

    // set kernel pointer 

    switch (k) { 

    case 0: 

      kernel = &copy;  

      kernelName = "simple copy           "; break; 

    case 1: 

      kernel = &copySharedMem;                   

      kernelName = "shared memory copy    "; break; 

    case 2: 

      kernel = &transposeNaive;                  

      kernelName = "naive transpose       "; break; 

    case 3: 

      kernel = &transposeCoalesced;              

      kernelName = "coalesced transpose   "; break; 

    case 4: 

      kernel = &transposeNoBankConflicts;        

      kernelName = "no bank conflict trans"; break; 

    case 5: 

      kernel = &transposeCoarseGrained;          

      kernelName = "coarse-grained        "; break; 

    case 6: 

      kernel = &transposeFineGrained;            

      kernelName = "fine-grained          "; break; 

    case 7: 

      kernel = &transposeDiagonal;               

      kernelName = "diagonal transpose    "; break; 

    }       

 

    // set reference solution 

    // NB: fine- and coarse-grained kernels are not full 

    //     transposes, so bypass check 

    if (kernel == &copy || kernel == &copySharedMem) { 

      gold = h_idata; 

    } else if (kernel == &transposeCoarseGrained ||  

               kernel == &transposeFineGrained) { 

      gold = h_odata; 

    } else { 

      gold = transposeGold; 

    } 

 

     

    // initialize events, EC parameters 

    cudaEventCreate(&start); 

    cudaEventCreate(&stop); 

 

    // warmup to avoid timing startup 
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    kernel<<<grid, threads>>>(d_odata, d_idata, size_x,size_y, 1); 

 

    // take measurements for loop over kernel launches 

    cudaEventRecord(start, 0); 

    for (int i=0; i < NUM_REPS; i++) { 

      kernel<<<grid, threads>>>(d_odata, d_idata,size_x,size_y,1); 

    } 

    cudaEventRecord(stop, 0); 

    cudaEventSynchronize(stop); 

    float outerTime; 

    cudaEventElapsedTime(&outerTime, start, stop);     

 

    cudaMemcpy(h_odata,d_odata, mem_size, cudaMemcpyDeviceToHost); 

    int res = comparef(gold, h_odata, size_x*size_y); 

    if (res != 1) 

      printf("*** %s kernel FAILED ***\n", kernelName); 

 

    // take measurements for loop inside kernel 

    cudaEventRecord(start, 0); 

    kernel<<<grid,threads>>> 

        (d_odata, d_idata, size_x, size_y, NUM_REPS); 

    cudaEventRecord(stop, 0); 

    cudaEventSynchronize(stop); 

    float innerTime; 

    cudaEventElapsedTime(&innerTime, start, stop);     

 

    cudaMemcpy(h_odata,d_odata, mem_size, cudaMemcpyDeviceToHost); 

    res = comparef(gold, h_odata, size_x*size_y); 

    if (res != 1) 

      printf("*** %s kernel FAILED ***\n", kernelName); 

     

    // report effective bandwidths 

    float outerBandwidth =  

       2.*1000*mem_size/(1024*1024*1024)/(outerTime/NUM_REPS); 

    float innerBandwidth =  

       2.*1000*mem_size/(1024*1024*1024)/(innerTime/NUM_REPS); 

    printf("%s\t%5.2f GB/s\t\t%5.2f GB/s\n",  

       kernelName, outerBandwidth, innerBandwidth); 

  } 

   

  // cleanup 

 

  free(h_idata); free(h_odata); free(transposeGold); 

  cudaFree(d_idata); cudaFree(d_odata); 

  cudaEventDestroy(start); cudaEventDestroy(stop); 

   

  return 0; 

} 
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