

January 2009

Optimizing Matrix

Transpose in CUDA

Greg Ruetsch

 gruetsch@nvidia.com

 Paulius Micikevicius

 pauliusm@nvidia.com

 ii

 January 2009 3

 Chapter 1.

Introduction

Optimizing CUDA Memory
Management in Matrix
Transpose

This document discusses aspects of CUDA application performance related to

efficient use of GPU memories and data management as applied to a matrix

transpose. In particular, this document discusses the following issues of memory

usage:

� coalescing data transfers to and from global memory

� shared memory bank conflicts

� partition camping

There are other aspects of efficient memory usage not discussed here, such as

data transfers between host and device, as well as constant and texture memories.

Both coalescing and partition camping deal with data transfers between global

device and on-chip memories, while shared memory bank conflicts deal with on-

chip shared memory.

The reader should be familiar with basic CUDA programming concepts such as

kernels, threads, and blocks, as well as a basic understanding of the different

memory spaces accessible by CUDA threads. A good introduction to CUDA

programming is given in the CUDA Programming Guide as well as other

resources on CUDA Zone (http://www.nvidia.com/cuda).

The matrix transpose problem statement is given next, followed by a brief

discussion of performance metrics, after which the remainder of the document

presents a sequence of CUDA matrix transpose kernels which progressively

address various performance bottlenecks.

 Matrix Transpose Characteristics

In this document we optimize a transpose of a matrix of floats that operates out-

of-place, i.e. the input and output matrices address separate memory locations.

For simplicity and brevity in presentation, we consider only square matrices

whose dimensions are integral multiples of 32 on a side, the tile size, through the

Optimizing Matrix Transpose in CUDA

4 January 2009

document. However, modifications of code required to accommodate matrices of

arbitrary size are straightforward.

 Code Highlights and Performance Measurements

The host code for all the transpose cases is given in Appendix A. The host code

performs typical tasks: data allocation and transfer between host and device, the

launching and timing of several kernels, result validation, and the deallocation of

host and device memory.

In addition to different matrix transposes, we run kernels that execute matrix

copies. The performance of the matrix copies serve as benchmarks that we

would like the matrix transpose to achieve.

For both the matrix copy and transpose, the relevant performance metric is the

effective bandwidth, calculated in GB/s as twice the size of the matrix – once for

reading the matrix and once for writing – divided by the time of execution. Since

timing is performed in loops executed NUM_REPS times, which is defined at the

top of the code, the effective bandwidth is also normalized by NUM_REPS.

Looping NUM_REPS times over code for measurement is done in two different

fashions: looping over kernel launches, and looping within the kernel over the

load and stores. The host code for these measurements is given below:

// take measurements for loop over kernel launches

 cudaEventRecord(start, 0);

 for (int i=0; i < NUM_REPS; i++) {

 kernel<<<grid, threads>>>(d_odata, d_idata,size_x,size_y,1);

 }

 cudaEventRecord(stop, 0);

 cudaEventSynchronize(stop);

 float outerTime;

 cudaEventElapsedTime(&outerTime, start, stop);

 ...

 // take measurements for loop inside kernel

 cudaEventRecord(start, 0);

 kernel<<<grid,threads>>>

 (d_odata, d_idata, size_x, size_y, NUM_REPS);

 cudaEventRecord(stop, 0);

 cudaEventSynchronize(stop);

 float innerTime;

 cudaEventElapsedTime(&innerTime, start, stop);

The first timing is done by a for loop in the host code, the second by passing

NUM_REPS as a parameter to the kernel. A simple copy kernel is shown below:

__global__ void copy(float *odata, float* idata, int width,

 int height, int nreps)

{

 int xIndex = blockIdx.x*TILE_DIM + threadIdx.x;

 int yIndex = blockIdx.y*TILE_DIM + threadIdx.y;

 int index = xIndex + width*yIndex;

Optimizing Matrix Transpose in CUDA

 January 2009 5

 for (int r=0; r < nreps; r++) {

 for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

 odata[index+i*width] = idata[index+i*width];

 }

 }

}

The difference between these two timings is the overhead of the kernel launch,

which should be consistent between different kernels, as well as the time spent in

calculating the matrix indices at the beginning of each kernel. In addition,

looping over kernel launches also acts as a synchronization mechanism. When

the kernel is launched multiple times from a loop in host code, all blocks from

one kernel launch must complete execution before any block of a following

launch can begin. As a result the set of active blocks and hence memory access

patterns resets every loop iteration. When the loop is performed within the

kernels, the set of active thread blocks has more opportunity to diverge as

execution progresses through the timing loop.

Both methods of timing code provide useful measurements, the first indicating

what one would typically use as an overall performance metric, and the second as

a means of comparing the data movement times between kernels.

In the following section we present different kernels called from the host code,

each addressing different performance issues. All kernels in this study launch

thread blocks of dimension 32x8, where each block transposes (or copies) a tile

of dimension 32x32. As such, the parameters TILE_DIM and BLOCK_ROWS

are set to 32 and 8, respectively. Using a thread block with fewer threads than

elements in a tile is advantageous for the matrix transpose in that each thread

transposes several matrix elements, four in our case, and much of the cost of

calculating the indices is amortized over these elements.

 January 2009 6

2. Copy and Transpose Kernels

Simple copy

The first two cases we consider are a naïve transpose and simple copy, each

using blocks of 32x8 threads on a 32x32 matrix tiles. The copy kernel was given

in the previous section, and shows the basic layout for all of the kernels. The

first two arguments odata and idata are pointers to the input and output

matrices, width and height are the matrix x and y dimensions, and nreps

determines how many times the loop over data movement between matrices is

performed. In this kernel, the global 2D matrix indices xIndex and yIndex

are calculated, which are in turn used to calculate index, the 1D index used by

each thread to access matrix elements. The loop over i adds additional offsets

to index so that each thread copies multiple elements of the array, and the loop

over r is used for timing the data transfer from input to output array multiple

times.

Naïve transpose

The naïve transpose:

__global__ void transposeNaive(float *odata, float* idata,

 int width, int height, int nreps)

{

 int xIndex = blockIdx.x*TILE_DIM + threadIdx.x;

 int yIndex = blockIdx.y*TILE_DIM + threadIdx.y;

 int index_in = xIndex + width * yIndex;

 int index_out = yIndex + height * xIndex;

 for (int r=0; r < nreps; r++) {

 for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

 odata[index_out+i] = idata[index_in+i*width];

 }

 }

}

is nearly identical to the copy kernel above, with the exception that index, the

array index used to access elements in both input and output arrays for the copy

kernel, is replaced by the two indices index_in (equivalent to index in the

copy kernel), and index_out. Each thread executing the kernel transposes

four elements from one column of the input matrix to their transposed locations

in one row of the output matrix.

Optimizing Matrix Transpose in CUDA

 January 2009 7

The performance of these two kernels on a 2048x2048 matrix using a GTX280 is

given in the following table:

 Effective Bandwidth (GB/s)
2048x2048, GTX 280

 Loop over kernel Loop in kernel

Simple Copy 96.9 81.6

Naïve Transpose 2.2 2.2

The minor differences in code between the copy and naïve transpose kernels have

a profound effect on performance - nearly two orders of magnitude. This brings

us to our first optimization technique: global memory coalescing.

Coalesced Transpose

Because device memory has a much higher latency and lower bandwidth than on-

chip memory, special attention must be paid to how global memory accesses are

performed, in our case loading data from idata and storing data in odata. All

global memory accesses by a half-warp of threads can be coalesced into one or

two transactions if certain criteria are met. These criteria depend on the compute

capability of the device, which can be determined, for example, by running the

deviceQuery SDK example. For compute capabilities of 1.0 and 1.1, the

following conditions are required for coalescing:

� threads must access either 32- 64-, or 128-bit words, resulting in either one

transaction (for 32- and 64-bit words) or two transactions (for 128-bit words)

� All 16 words must lie in the same aligned segment of 64 or 128 bytes for 32-

and 64-bit words, and for 128-bit words the data must lie in two contiguous

128 byte aligned segments

� The threads need to access words in sequence. If the k-th thread is to access

a word, it must access the k-th word, although not all threads need to

participate.

For devices with compute capabilities of 1.2, requirements for coalescing are

relaxed. Coalescing into a single transaction can occur when data lies in 32-, 64-,

and 128-byte aligned segments, regardless of the access pattern by threads within

the segment. In general, if a half-warp of threads access N segments of memory,

N memory transactions are issued.

In a nutshell, if a memory access coalesces on a device of compute capability 1.0

or 1.1, then it will coalesce on a device of compute capability 1.2 and higher. If

it doesn’t coalesce on a device of compute capability 1.0 or 1.1, then it may

Optimizing Matrix Transpose in CUDA

8 January 2009

either completely coalesce or perhaps result in a reduced number of memory

transactions, on a device of compute capability 1.2 or higher.

For both the simple copy and naïve transpose, all loads from idata coalesce on

devices with any of the compute capabilities discussed above. For each iteration

within the i-loop, each half warp reads 16 contiguous 32-bit words, or one half

of a row of a tile. Allocating device memory through cudaMalloc() and

choosing TILE_DIM to be a multiple of 16 ensures alignment with a segment of

memory, therefore all loads are coalesced.

Coalescing behavior differs between the simple copy and naïve transpose kernels

when writing to odata. For the simple copy, during each iteration of the i-

loop, a half warp writes one half of a row of a tile in a coalesced manner. In the

case of the naïve transpose, for each iteration of the i-loop a half warp writes one

half of a column of floats to different segments of memory, resulting in 16

separate memory transactions, regardless of the compute capability.

The way to avoid uncoalesced global memory access is to read the data into

shared memory, and have each half warp access noncontiguous locations in

shared memory in order to write contiguous data to odata. There is no

performance penalty for noncontiguous access patters in shared memory as there

is in global memory, however the above procedure requires that each element in

a tile be accessed by different threads, so a __synchthreads() call is

required to ensure that all reads from idata to shared memory have completed

before writes from shared memory to odata commence. A coalesced transpose

is listed below:

__global__ void transposeCoalesced(float *odata,

 float *idata, int width, int height, int nreps)

{

 __shared__ float tile[TILE_DIM][TILE_DIM];

 int xIndex = blockIdx.x*TILE_DIM + threadIdx.x;

 int yIndex = blockIdx.y*TILE_DIM + threadIdx.y;

 int index_in = xIndex + (yIndex)*width;

 xIndex = blockIdx.y * TILE_DIM + threadIdx.x;

 yIndex = blockIdx.x * TILE_DIM + threadIdx.y;

 int index_out = xIndex + (yIndex)*height;

 for (int r=0; r < nreps; r++) {

 for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

 tile[threadIdx.y+i][threadIdx.x] =

 idata[index_in+i*width];

 }

 __syncthreads();

 for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

 odata[index_out+i*height] =

 tile[threadIdx.x][threadIdx.y+i];

 }

 }

}

A depiction of the data flow of a half warp in the coalesced transpose kernel is

given below. The half warp writes four half rows of the idata matrix tile to the

Optimizing Matrix Transpose in CUDA

 January 2009 9

shared memory 32x32 array “tile” indicated by the yellow line segments.

After a __syncthreads() call to ensure all writes to tile are completed,

the half warp writes four half columns of tile to four half rows of an odata

matrix tile, indicated by the green line segments.

With the improved access pattern to memory in odata, the writes are coalesced

and we see an improved performance:

 Effective Bandwidth (GB/s)
2048x2048, GTX 280

 Loop over kernel Loop in kernel

Simple Copy 96.9 81.6

Naïve Transpose 2.2 2.2

Coalesced Transpose 16.5 17.1

While there is a dramatic increase in effective bandwidth of the coalesced

transpose over the naïve transpose, there still remains a large performance gap

between the coalesced transpose and the copy. The additional indexing required

by the transpose doesn’t appear to be the cause for the performance gap, since the

results in the “Loop in kernel” column, where the index calculation is amortized

over 100 iterations of the data movement, also shows a large performance

difference. One possible cause of this performance gap is the synchronization

barrier required in the coalesced transpose. This can be easily assessed using the

following copy kernel which utilizes shared memory and contains a

__syncthreads() call:

__global__ void copySharedMem(float *odata, float *idata,

 int width, int height, int nreps)

{

idata odata

tile

Optimizing Matrix Transpose in CUDA

10 January 2009

 __shared__ float tile[TILE_DIM][TILE_DIM];

 int xIndex = blockIdx.x*TILE_DIM + threadIdx.x;

 int yIndex = blockIdx.y*TILE_DIM + threadIdx.y;

 int index = xIndex + width*yIndex;

 for (int r=0; r < nreps; r++) {

 for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

 tile[threadIdx.y+i][threadIdx.x] =

 idata[index+i*width];

 }

 __syncthreads();

 for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

 odata[index+i*width] =

 tile[threadIdx.y+i][threadIdx.x];

 }

 }

}

The __syncthreads() call is not needed for successful execution of this

kernel, as threads do not share data, and is included only to assess the cost of the

synchronization barrier in the coalesced transpose. The results are shown in the

following modified table:

 Effective Bandwidth (GB/s)
2048x2048, GTX 280

 Loop over kernel Loop in kernel

Simple Copy 96.9 81.6

Shared Memory Copy 80.9 81.1

Naïve Transpose 2.2 2.2

Coalesced Transpose 16.5 17.1

The shared memory copy results seem to suggest that the use of shared memory

with a synchronization barrier has little effect on the performance, certainly as far

as the “Loop in kernel” column indicates when comparing the simple copy and

shared memory copy. When comparing the coalesced transpose and shared

memory copy kernels, however, there is one performance bottleneck regarding

how shared memory is accessed that needs to be addressed: shared memory bank

conflicts.

Optimizing Matrix Transpose in CUDA

 January 2009 11

Shared memory bank conflicts

Shared memory is divided into 16 equally-sized memory modules, called banks,

which are organized such that successive 32-bit words are assigned to successive

banks. These banks can be accessed simultaneously, and to achieve maximum

bandwidth to and from shared memory the threads in a half warp should access

shared memory associated with different banks. The exception to this rule is

when all threads in a half warp read the same shared memory address, which

results in a broadcast where the data at that address is sent to all threads of the

half warp in one transaction.

One can use the warp_serialize flag when profiling CUDA applications to

determine whether shared memory bank conflicts occur in any kernel. In

general, this flag also reflects use of atomics and constant memory, however

neither of these are present in our example.

The coalesced transpose uses a 32x32 shared memory array of floats. For this

sized array, all data in columns k and k+16 are mapped to the same bank. As a

result, when writing partial columns from tile in shared memory to rows in

odata the half warp experiences a 16-way bank conflict and serializes the

request. A simple to avoid this conflict is to pad the shared memory array by one

column:

 __shared__ float tile[TILE_DIM][TILE_DIM+1];

The padding does not affect shared memory bank access pattern when writing a

half warp to shared memory, which remains conflict free, but by adding a single

column now the access of a half warp of data in a column is also conflict free.

The performance of the kernel, now coalesced and memory bank conflict free, is

added to our table below:

 Effective Bandwidth (GB/s)
2048x2048, GTX 280

 Loop over kernel Loop in kernel

Simple Copy 96.9 81.6

Shared Memory Copy 80.9 81.1

Naïve Transpose 2.2 2.2

Coalesced Transpose 16.5 17.1

Bank Conflict Free Transpose 16.6 17.2

While padding the shared memory array did eliminate shared memory bank

conflicts, as was confirmed by checking the warp_serialize flag with the

CUDA profiler, it has little effect (when implemented at this stage) on

performance. As a result, there is still a large performance gap between the

coalesced and shared memory bank conflict free transpose and the shared

Optimizing Matrix Transpose in CUDA

12 January 2009

memory copy. In the next section we break the transpose into components to

determine the cause for the performance degradation.

 Decomposing Transpose

There is over a factor of four performance difference between the best optimized

transpose and the shared memory copy in the table above. This is the case not

only for measurements which loop over the kernel launches, but also for

measurements obtained from looping within the kernel where the costs associated

with the additional index calculations are amortized over the 100 iterations.

To investigate further, we revisit the data flow for the transpose and compare it to

that of the copy, both of which are indicated in the top portion of the diagram

below. There are essentially two differences between the copy code and the

transpose: transposing the data within a tile, and writing data to transposed tile.

We can isolate the performance between each of these two components by

implementing two kernels that individually perform just one of these

components. As indicated in the bottom half of the diagram below, the fine-

grained transpose kernel transposes the data within a tile, but writes the tile to the

location that a copy would write the tile. The coarse-grained transpose kernel

writes the tile to the transposed location in the odata matrix, but does not

transpose the data within the tile.

idata odata

tile
copy

transpose

coarse-grained
transpose

fine-grained
transpose

Optimizing Matrix Transpose in CUDA

 January 2009 13

The source code for these two kernels is given below:

__global__ void transposeFineGrained(float *odata,

 float *idata, int width, int height, int nreps)

{

 __shared__ float block[TILE_DIM][TILE_DIM+1];

 int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;

 int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;

 int index = xIndex + (yIndex)*width;

 for (int r=0; r<nreps; r++) {

 for (int i=0; i < TILE_DIM; i += BLOCK_ROWS) {

 block[threadIdx.y+i][threadIdx.x] =

 idata[index+i*width];

 }

 __syncthreads();

 for (int i=0; i < TILE_DIM; i += BLOCK_ROWS) {

 odata[index+i*height] =

 block[threadIdx.x][threadIdx.y+i];

 }

 }

}

__global__ void transposeCoarseGrained(float *odata,

 float *idata, int width, int height, int nreps)

{

 __shared__ float block[TILE_DIM][TILE_DIM+1];

 int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;

 int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;

 int index_in = xIndex + (yIndex)*width;

 xIndex = blockIdx.y * TILE_DIM + threadIdx.x;

 yIndex = blockIdx.x * TILE_DIM + threadIdx.y;

 int index_out = xIndex + (yIndex)*height;

 for (int r=0; r<nreps; r++) {

 for (int i=0; i<TILE_DIM; i += BLOCK_ROWS) {

 block[threadIdx.y+i][threadIdx.x] =

 idata[index_in+i*width];

 }

 __syncthreads();

 for (int i=0; i<TILE_DIM; i += BLOCK_ROWS) {

 odata[index_out+i*height] =

 block[threadIdx.y+i][threadIdx.x];

 }

 }

}

Optimizing Matrix Transpose in CUDA

14 January 2009

Note that the fine- and coarse-grained kernels are not actual transposes since in

either case odata is not a transpose of idata, but as you will see they are

useful in analyzing performance bottlenecks. The performance results for these

two cases are added to our table below:

 Effective Bandwidth (GB/s)
2048x2048, GTX 280

 Loop over kernel Loop in kernel

Simple Copy 96.9 81.6

Shared Memory Copy 80.9 81.1

Naïve Transpose 2.2 2.2

Coalesced Transpose 16.5 17.1

Bank Conflict Free Transpose 16.6 17.2

Fine-grained Transpose 80.4 81.5

Coarse-grained Transpose 16.7 17.1

The fine-grained transpose has performance similar to the shared memory copy,

whereas the coarse-grained transpose has roughly the performance of the

coalesced and bank conflict free transposes. Thus the performance bottleneck

lies in writing data to the transposed location in global memory. Just as shared

memory performance can be degraded via bank conflicts, an analogous

performance degradation can occur with global memory access through partition

camping, which we investigate next.

Partition Camping

Just as shared memory is divided into 16 banks of 32-bit width, global memory is

divided into either 6 partitions (on 8- and 9-series GPUs) or 8 partitions (on 200-

and 10-series GPUs) of 256-byte width. We previously discussed that to use

shared memory effectively, threads within a half warp should access different

banks so that these accesses can occur simultaneously. If threads within a half

warp access shared memory though only a few banks, then bank conflicts occur.

To use global memory effectively, concurrent accesses to global memory by all

active warps should be divided evenly amongst partitions. The term partition

camping is used to describe the case when global memory accesses are directed

through a subset of partitions, causing requests to queue up at some partitions

while other partitions go unused.

Optimizing Matrix Transpose in CUDA

 January 2009 15

While coalescing concerns global memory accesses within a half warp, partition

camping concerns global memory accesses amongst active half warps. Since

partition camping concerns how active thread blocks behave, the issue of how

thread blocks are scheduled on multiprocessors is important. When a kernel is

launched, the order in which blocks are assigned to multiprocessors is determined

by the one-dimensional block ID defined as:

bid = blockIdx.x + gridDim.x*blockIdx.y;

which is a row-major ordering of the blocks in the grid. Once maximum

occupancy is reached, additional blocks are assigned to multiprocessors as

needed. How quickly and the order in which blocks complete cannot be

determined, so active blocks are initially contiguous but become less contiguous

as execution of the kernel progresses.

If we return to our matrix transpose and look at how tiles in our 2048x2048

matrices map to partitions on a GTX 280, as depicted in the figure below, we

immediately see that partition camping is a problem.

With 8 partitions of 256-byte width, all data in strides of 2048 bytes (or 512

floats) map to the same partition. Any float matrix with an integral multiple of

512 columns, such as our 2048x2048 matrix, will contain columns whose

elements map to a single partition. With tiles of 32x32 floats (or 128x128 bytes),

whose one-dimensional block IDs are shown in the figure, all the data within the

first two columns of tiles map to the same partition, and likewise for other pairs

of tile columns (assuming the matrices are aligned to a partition segment).

Combining how the matrix elements map to partitions, and how blocks are

scheduled, we can see that concurrent blocks will be accessing tiles row-wise in

idata which will be roughly equally distributed amongst partitions, however

these blocks will access tiles column-wise in odata which will typically access

global memory through just a few partitions.

Having diagnosed the problem as partition camping, the question now turns to

what can be done about it. Just as with shared memory, padding is an option.

Adding an additional 64 columns (one partition width) to odata will cause rows

of a tile to map sequentially to different partitions. However, such padding can

become prohibitive to certain applications. There is a simpler solution that

essentially involves rescheduling how blocks are executed.

 … 130 129 128

69 68 67 66 65 64

5 4 3 2 1 0

 69 5

 68 4

 … 67 3

 130 66 2

 129 65 1

 128 64 0

idata odata

Optimizing Matrix Transpose in CUDA

16 January 2009

Diagonal block reordering

While the programmer does not have direct control of the order in which blocks

are scheduled, which is determined by the value of the automatic kernel variable

blockIdx, the programmer does have the flexibility in how to interpret the

components of blockIdx. Given how the components blockIdx are named,

i.e. x and y, one generally assumes these components refer to a cartesian

coordinate system. This does not need to be the case, however, and one can

choose otherwise. Within the cartesian interpretation one could swap the roles of

these two components, which would eliminate the partition camping problem in

writing to odata, however this would merely move the problem to reading data

from idata.

One way to avoid partition camping in both reading from idata and writing to

odata is to use a diagonal interpretation of the components of blockIdx: the

y component represents different diagonal slices of tiles through the matrix and

the x component indicates the distance along each diagonal. Both cartesian and

diagonal interpretations of blockIdx components are shown in the top portion

of the diagram below for a 4x4-block matrix, along with the resulting one-

dimensional block ID on the bottom.

3,3 2,3 1,3 0,3

3,2 2,2 1,2 0,2

3,1 2,1 1,1 0,1

3,0 2,0 1,0 0,0

3,0 3,3 3,2 3,1

2,1 2,0 2,3 2,2

1,2 1,1 1,0 1,3

0,3 0,2 0,1 0,0

blockIdx.x + gridDim.x*blockIdx.y

15 14 13 12

11 10 9 8

7 6 5 4

3 2 1 0

3 15 11 7

6 2 14 10

9 5 1 13

12 8 4 0

Cartesian
Coordinate

s

Diagonal
Coordinate

s

Optimizing Matrix Transpose in CUDA

 January 2009 17

Before we discuss the merits of using the diagonal interpretation of blockIdx

components in the matrix transpose, we briefly mention how it can be efficiently

implemented using a mapping of coordinates. This technique is useful when

writing new kernels, but even more so when modifying existing kernels to use

diagonal (or other) interpretations of blockIdx fields. If blockIdx.x and

blockIdx.y represent the diagonal coordinates, then (for block-square

matrixes) the corresponding cartesian coordinates are given by the following

mapping:

blockIdx_y = blockIdx.x;

blockIdx_x = (blockIdx.x+blockIdx.y)%gridDim.x;

One would simply include the previous two lines of code at the beginning of the

kernel, and write the kernel assuming the cartesian interpretation of blockIdx

fields, except using blockIdx_x and blockIdx_y in place of blockIdx.x

and blockIdx.y, respectively, throughout the kernel. This is precisely what is

done in the transposeDiagonal kernel below:

__global__ void transposeDiagonal(float *odata,

 float *idata, int width, int height, int nreps)

{

 __shared__ float tile[TILE_DIM][TILE_DIM+1];

 int blockIdx_x, blockIdx_y;

 // diagonal reordering

 if (width == height) {

 blockIdx_y = blockIdx.x;

 blockIdx_x = (blockIdx.x+blockIdx.y)%gridDim.x;

 } else {

 int bid = blockIdx.x + gridDim.x*blockIdx.y;

 blockIdx_y = bid%gridDim.y;

 blockIdx_x = ((bid/gridDim.y)+blockIdx_y)%gridDim.x;

 }

 int xIndex = blockIdx_x*TILE_DIM + threadIdx.x;

 int yIndex = blockIdx_y*TILE_DIM + threadIdx.y;

 int index_in = xIndex + (yIndex)*width;

 xIndex = blockIdx_y*TILE_DIM + threadIdx.x;

 yIndex = blockIdx_x*TILE_DIM + threadIdx.y;

 int index_out = xIndex + (yIndex)*height;

 for (int r=0; r < nreps; r++) {

 for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

 tile[threadIdx.y+i][threadIdx.x] =

 idata[index_in+i*width];

 }

 __syncthreads();

 for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

 odata[index_out+i*height] =

 tile[threadIdx.x][threadIdx.y+i];

 }

 }

}

Optimizing Matrix Transpose in CUDA

18 January 2009

Here we allow for both square and nonsquare matrices. The mapping for

nonsquare matrices can be used in the general case, however the simpler

expressions for square matrices evaluate quicker and are preferable when

appropriate.

If we revisit our 2048x2048 matrix in the figure below, we can see how the

diagonal reordering solves the partition camping problem. When reading from

idata and writing to odata in the diagonal case, pairs of tiles cycle through

partitions just as in the cartesian case when reading data from idata.

The performance of the diagonal kernel in the table below reflects this. The

bandwidth measured when looping within the kernel over the read and writes to

global memory is within a few percent of the shared memory copy. When

looping over the kernel, the performance degrades slightly, likely due to

additional computation involved in calculating blockIdx_x and

blockIdx_y. However, even with this performance degradation the diagonal

transpose has over four times the bandwidth of the other complete transposes.

 … 130 129 128

69 68 67 66 65 64

5 4 3 2 1 0

 69 5

 68 4

 … 67 3

 130 66 2

 129 65 1

 128 64 0

idata odata

5

68 4

… 67 3

 130 66 2

 129 65 1

 128 64 0

5 68 …

 4 67 130

 3 66 129

 2 65 128

 1 64

 0

Cartesian

Diagonal

Optimizing Matrix Transpose in CUDA

 January 2009 19

 Effective Bandwidth (GB/s)
2048x2048, GTX 280

 Loop over kernel Loop in kernel

Simple Copy 96.9 81.6

Shared Memory Copy 80.9 81.1

Naïve Transpose 2.2 2.2

Coalesced Transpose 16.5 17.1

Bank Conflict Free Transpose 16.6 17.2

Fine-grained Transpose 80.4 81.5

Coarse-grained Transpose 16.7 17.1

Diagonal 69.5 78.3

 January 2009 20

 Summary

In this paper we have discussed several aspects of GPU memory management

through a sequence of progressively optimized transpose kernels. The sequence

is typical of performance tuning using CUDA. The first step in improving

effective bandwidth is to ensure that global memory accesses are coalesced,

which can improve performance by an order of magnitude.

The second step was to look at shared memory bank conflicts. In this study

eliminating shared memory bank conflicts appeared to have little effect on

performance, however that is largely due to when it was applied in relation to

other optimizations: the effect of bank conflicts were masked by partition

camping. By removing the padding of the shared memory array in the diagonally

reordered transpose, one can see that bank conflicts have a sizeable effect on

performance.

While coalescing and bank conflicts will remain relatively consistent as the

problem size varies, partition camping is dependent on problem size, and varies

across different generations of hardware. The particular sized matrix in this

example will experience far less performance degradation due to partition

camping on a G80-based card due to the different number of partitions: 6

partitions on the 8-series rather than 8 on the 200-series.

The final version of the transpose kernel by no means represents the highest level

of optimization that can be achieved. Tile size, number of elements per thread,

and instruction optimizations can improve performance, both of the transpose

and the copy kernels. But in the study we merely focused on the issues that have

the largest impact.

 January 2009 21

 Appendix A - Host Code

#include <stdio.h>

// kernels transpose/copy a tile of TILE_DIM x TILE_DIM elements

// using a TILE_DIM x BLOCK_ROWS thread block, so that each thread

// transposes TILE_DIM/BLOCK_ROWS elements. TILE_DIM must be an

// integral multiple of BLOCK_ROWS

#define TILE_DIM 32

#define BLOCK_ROWS 8

// Number of repetitions used for timing.

#define NUM_REPS 100

int

main(int argc, char** argv)

{

 // set matrix size

 const int size_x = 2048, size_y = 2048;

 // kernel pointer and descriptor

 void (*kernel)(float *, float *, int, int, int);

 char *kernelName;

 // execution configuration parameters

 dim3 grid(size_x/TILE_DIM, size_y/TILE_DIM),

 threads(TILE_DIM,BLOCK_ROWS);

 // CUDA events

 cudaEvent_t start, stop;

 // size of memory required to store the matrix

 const int mem_size = sizeof(float) * size_x*size_y;

 // allocate host memory

 float *h_idata = (float*) malloc(mem_size);

 float *h_odata = (float*) malloc(mem_size);

 float *transposeGold = (float *) malloc(mem_size);

 float *gold;

 // allocate device memory

 float *d_idata, *d_odata;

 cudaMalloc((void**) &d_idata, mem_size);

 cudaMalloc((void**) &d_odata, mem_size);

 // initalize host data

 for(int i = 0; i < (size_x*size_y); ++i)

 h_idata[i] = (float) i;

 // copy host data to device

 cudaMemcpy(d_idata, h_idata, mem_size,

 cudaMemcpyHostToDevice);

Optimizing Matrix Transpose in CUDA

22 January 2009

 // Compute reference transpose solution

 computeTransposeGold(transposeGold, h_idata, size_x, size_y);

 // print out common data for all kernels

 printf("\nMatrix size: %dx%d, tile: %dx%d, block: %dx%d\n\n",

 size_x, size_y, TILE_DIM, TILE_DIM, TILE_DIM, BLOCK_ROWS);

 printf("Kernel\t\t\tLoop over kernel\tLoop within kernel\n");

 printf("------\t\t\t----------------\t------------------\n");

 //

 // loop over different kernels

 //

 for (int k = 0; k<8; k++) {

 // set kernel pointer

 switch (k) {

 case 0:

 kernel = ©

 kernelName = "simple copy "; break;

 case 1:

 kernel = ©SharedMem;

 kernelName = "shared memory copy "; break;

 case 2:

 kernel = &transposeNaive;

 kernelName = "naive transpose "; break;

 case 3:

 kernel = &transposeCoalesced;

 kernelName = "coalesced transpose "; break;

 case 4:

 kernel = &transposeNoBankConflicts;

 kernelName = "no bank conflict trans"; break;

 case 5:

 kernel = &transposeCoarseGrained;

 kernelName = "coarse-grained "; break;

 case 6:

 kernel = &transposeFineGrained;

 kernelName = "fine-grained "; break;

 case 7:

 kernel = &transposeDiagonal;

 kernelName = "diagonal transpose "; break;

 }

 // set reference solution

 // NB: fine- and coarse-grained kernels are not full

 // transposes, so bypass check

 if (kernel == © || kernel == ©SharedMem) {

 gold = h_idata;

 } else if (kernel == &transposeCoarseGrained ||

 kernel == &transposeFineGrained) {

 gold = h_odata;

 } else {

 gold = transposeGold;

 }

 // initialize events, EC parameters

 cudaEventCreate(&start);

 cudaEventCreate(&stop);

 // warmup to avoid timing startup

Optimizing Matrix Transpose in CUDA

 January 2009 23

 kernel<<<grid, threads>>>(d_odata, d_idata, size_x,size_y, 1);

 // take measurements for loop over kernel launches

 cudaEventRecord(start, 0);

 for (int i=0; i < NUM_REPS; i++) {

 kernel<<<grid, threads>>>(d_odata, d_idata,size_x,size_y,1);

 }

 cudaEventRecord(stop, 0);

 cudaEventSynchronize(stop);

 float outerTime;

 cudaEventElapsedTime(&outerTime, start, stop);

 cudaMemcpy(h_odata,d_odata, mem_size, cudaMemcpyDeviceToHost);

 int res = comparef(gold, h_odata, size_x*size_y);

 if (res != 1)

 printf("*** %s kernel FAILED ***\n", kernelName);

 // take measurements for loop inside kernel

 cudaEventRecord(start, 0);

 kernel<<<grid,threads>>>

 (d_odata, d_idata, size_x, size_y, NUM_REPS);

 cudaEventRecord(stop, 0);

 cudaEventSynchronize(stop);

 float innerTime;

 cudaEventElapsedTime(&innerTime, start, stop);

 cudaMemcpy(h_odata,d_odata, mem_size, cudaMemcpyDeviceToHost);

 res = comparef(gold, h_odata, size_x*size_y);

 if (res != 1)

 printf("*** %s kernel FAILED ***\n", kernelName);

 // report effective bandwidths

 float outerBandwidth =

 2.*1000*mem_size/(1024*1024*1024)/(outerTime/NUM_REPS);

 float innerBandwidth =

 2.*1000*mem_size/(1024*1024*1024)/(innerTime/NUM_REPS);

 printf("%s\t%5.2f GB/s\t\t%5.2f GB/s\n",

 kernelName, outerBandwidth, innerBandwidth);

 }

 // cleanup

 free(h_idata); free(h_odata); free(transposeGold);

 cudaFree(d_idata); cudaFree(d_odata);

 cudaEventDestroy(start); cudaEventDestroy(stop);

 return 0;

}

Optimizing Matrix Transpose in CUDA

24 January 2009

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under
any patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, and CUDA are trademarks or registered trademarks of NVIDIA Corporation in the
United States and other countries. Other company and product names may be trademarks of the respective
companies with which they are associated.

Macrovision Compliance Statement

NVIDIA Products that are Macrovision enabled can only be sold or distributed to buyers with a valid and
existing authorization from Macrovision to purchase and incorporate the device into buyer’s products.

Macrovision copy protection technology is protected by U.S. patent numbers 5,583,936; 6,516,132;
6,836,549; and 7,050,698 and other intellectual property rights. The use of Macrovision’s copy protection
technology in the device must be authorized by Macrovision and is intended for home and other limited pay-
per-view uses only, unless otherwise authorized in writing by Macrovision. Reverse engineering or
disassembly is prohibited.

Copyright

© 2009 NVIDIA Corporation. All rights reserved.

