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It is common to recommend: 
• running more threads per multiprocessor 
• running more threads per thread block 

 
Motivation: this is the only way to hide latencies 

 
• But… 
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Prologue 



Faster codes run at lower occupancy: 

CUFFT 2.2 CUFFT 2.3 

Threads per block 256 64 4x smaller thread blocks 

Occupancy (G80) 33% 17% 2x lower occupancy 

Performance (G80) 45 Gflop/s 93 Gflop/s 2x higher performance 

CUBLAS 1.1 CUBLAS 2.0 

Threads per block  512 64 8x smaller thread blocks 

Occupancy (G80) 67% 33% 2x lower occupancy 

Performance (G80) 128 Gflop/s 204 Gflop/s 1.6x higher performance 

Batch of 1024-point complex-to-complex FFTs, single precision: 

Multiplication of two large matrices, single precision (SGEMM): 
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Maximizing occupancy, you may lose performance 



Two common fallacies: 

‒ multithreading is the only way to hide latency on GPU 

‒ shared memory is as fast as registers 
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This talk 

I. Hide arithmetic latency using fewer threads 

II. Hide memory latency using fewer threads 

III. Run faster by using fewer threads 

IV. Case study: matrix multiply 

V. Case study: FFT 
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Part I: 

Hide arithmetic latency using fewer threads 
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  x = a + b;// takes ≈20 cycles to execute 

  y = a + c;// independent, can start anytime 

  (stall) 

  z = x + d;// dependent, must wait for completion 
 

Arithmetic latency 

Latency: time required to perform an operation 
‒ ≈20 cycles for arithmetic; 400+ cycles for memory 
‒ Can’t start a dependent operation for this time 
‒ Can hide it by overlapping with other operations 
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Arithmetic throughput 
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Latency is often confused with throughput 

‒ E.g. “arithmetic is 100x faster than memory – costs 4 cycles 
per warp (G80), whence memory operation costs 400 cycles” 

‒ One is rate, another is time 

Throughput: how many operations complete per cycle 

‒ Arithmetic: 1.3 Tflop/s = 480 ops/cycle (op=multiply-add) 

‒ Memory: 177 GB/s ≈ 32 ops/cycle (op=32-bit load) 



Hide latency = do other operations when waiting 
for latency 

• Will run faster 

• But not faster than the peak 

• How  to get the peak? 
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Use Little’s law 
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Needed parallelism = Latency x Throughput



Arithmetic parallelism in numbers 
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GPU model 
Latency 
(cycles) 

Throughput 
(cores/SM) 

Parallelism 
(operations/SM) 

G80-GT200 ≈24 8 ≈192 

GF100 ≈18 32 ≈576 

GF104 ≈18 48 ≈864 

(latency varies between different types of ops) 

Can’t get 100% throughput with less parallelism 

‒ Not enough operations in the flight = idle cycles 



Thread-level  parallelism (TLP) 
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It is usually recommended to use threads to supply the 
needed parallelism, e.g. 192 threads per SM on G80: 

x = x + a
x = x + b
x = x + c

y = y + a
y = y + b
y = y + c

thread 1 thread 2 thread 3

w = w + a
w = w + b
w = w + c

thread 4

z = z + a
z = z + b
z = z + c

4 independent operations



Instruction-level parallelism (ILP) 
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But you can also use parallelism among instructions in a 
single thread: 

x = x + a
y = y + a

w = w + a
z = z + a

x = x + b
y = y + b

w = w + b
z = z + b

in
s
tr

u
c
ti
o

n
s

thread

4 independent 

operations



You can use both ILP and TLP on GPU 

This applies to all CUDA-capable GPUs. E.g. on G80: 
‒ Get ≈100% peak with 25% occupancy if no ILP 

‒ Or with 8% occupancy, if 3 operations from each thread can 
be concurrently processed 

On GF104 you must use ILP to get >66% of peak! 
‒ 48 cores/SM, one instruction is broadcast across 16 cores  

‒ So, must issue 3 instructions per cycle 

‒ But have only 2 warp schedulers 

‒ Instead, it can issue 2 instructions per warp in the same cycle 
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Let’s check it experimentally 
Do many arithmetic instructions with no ILP: 
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  #pragma unroll UNROLL 

  for( int i = 0; i < N_ITERATIONS; i++ ) 

  { 

    a = a * b + c; 

  } 

 
Choose large N_ITERATIONS and suitable UNROLL 

Ensure a, b and c are in registers and a is used later 

Run 1 block (use 1 SM), vary block size 
‒ See what fraction of peak (1.3TFLOPS/15) we get 



No ILP: need 576 threads to get 100% utilization 
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Experimental result (GTX480) 
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Introduce instruction-level parallelism 

Try ILP=2: two independent instruction per thread 
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  #pragma unroll UNROLL 

  for( int i = 0; i < N_ITERATIONS; i++ ) 

  { 

    a = a * b + c; 

    d = d * b + c; 

  } 

If multithreading is the only way to hide latency 
on GPU, we’ve got to get the same performance 



ILP=2: need 320 threads to get 100% utilization 
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GPUs can hide latency using ILP 
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Add more instruction-level parallelism 

ILP=3: triples of independent instructions 
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  #pragma unroll UNROLL 

  for( int i = 0; i < N_ITERATIONS; i++ ) 

  { 

    a = a * b + c; 

    d = d * b + c; 

    e = e * b + c; 

  } 

How far can we push it? 



ILP=3: need 256 threads to get 100% utilization 
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Have more ILP – need fewer threads 
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ILP=4: need 192 threads to get 100% utilization 
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Unfortunately, doesn’t scale past ILP=4 
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Summary: can hide latency either way 
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Applies to other GPUs too, e.g. to G80: 
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Fallacy: 
Increasing occupancy is the only way to improve 
latency hiding 

 
– No, increasing ILP is another way. 
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Fallacy: 
Occupancy is a metric of utilization 

 
 
– No, it’s only one of the contributing factors. 
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Fallacy: 
“To hide arithmetic latency completely, multiprocessors 
should be running at least 192 threads on devices of 
compute capability 1.x (…) or, on devices of compute 
capability 2.0, as many as 384 threads” (CUDA Best 
Practices Guide) 

 
– No, it is doable with 64 threads per SM on G80-

GT200 and with 192 threads on GF100. 

26 



Part II: 

Hide memory latency using fewer threads 
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Hiding memory latency 

Apply same formula but for memory operations: 
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Latency Throughput Parallelism 

Arithmetic ≈18 cycles 32 ops/SM/cycle 576 ops/SM 

Memory < 800 cycles (?) < 177 GB/s < 100 KB 

Needed parallelism = Latency x Throughput

So, hide memory latency = keep 100 KB in the flight 

‒ Less if kernel is compute bound (needs fewer GB/s) 



Again, there are multiple ways to hide latency 
‒ Use multithreading to get 100KB in the flight 

‒ Use instruction parallelism (more fetches per thread) 

‒ Use bit-level parallelism (use 64/128-bit fetches) 

Do more work per thread – need fewer threads 
‒ Fetch 4B/thread – need 25 000 threads 

‒ Fetch 100 B/thread – need 1 000 threads 
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How many threads is 100 KB? 



Copy one float per thread: 
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__global__ void memcpy( float *dst, float *src ) 

{  

  int block = blockIdx.x + blockIdx.y * gridDim.x; 

  int index = threadIdx.x + block * blockDim.x; 

  

  float a0 = src[index]; 

  dst[index] = a0; 

} 

Empirical validation 

Run many blocks, allocate shared memory 
dynamically to control occupancy 



Copying 1 float per thread (GTX480) 

Must maximize occupancy to hide latency? 
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__global__ void memcpy( float *dst, float *src ) 

{  

  int iblock= blockIdx.x + blockIdx.y * gridDim.x; 

  int index = threadIdx.x + 2 * iblock * blockDim.x; 

  

  float a0 = src[index]; 

  //no latency stall 

  float a1 = src[index+blockDim.x]; 

  //stall 

  dst[index] = a0; 

  dst[index+blockDim.x] = a1; 

} 

Do more parallel work per thread 

Note, threads don’t stall on memory access 
– Only on data dependency 

 



Copying 2 float values per thread 
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Can get away with lower occupancy now 
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__global__ void memcpy( float *dst, float *src ) 

{  

  int iblock = blockIdx.x + blockIdx.y * gridDim.x; 

  int index  = threadIdx.x + 4 * iblock * blockDim.x; 

  

  float a[4];//allocated in registers 

  for(int i=0;i<4;i++) a[i]=src[index+i*blockDim.x]; 

  for(int i=0;i<4;i++) dst[index+i*blockDim.x]=a[i]; 

} 

Do more parallel work per thread 

Note, local arrays are allocated in registers if possible 



Copying 4 float values per thread 

35 

Mere 25% occupancy is sufficient. How far we can go? 
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Copying 8 float values per thread 
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Copying 8 float2 values per thread 
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87% of pin bandwidth at only 8% occupancy! 
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Copying 8 float4 values per thread 
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84% of peak at 4% occupancy 
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Copying 14 float4 values per thread 
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Fallacy: 
“Low occupancy always interferes with the ability to 
hide memory latency, resulting in performance 
degradation” (CUDA Best Practices Guide) 

 
 
– We’ve just seen 84% of the peak at mere 4% 

occupancy. Note that this is above 71% that 
cudaMemcpy achieves at best. 
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Fallacy: 
“In general, more warps are required if the ratio of the 
number of instructions with no off-chip memory 
operands (…) to the number of instructions with off-
chip memory operands is low.” (CUDA Programming 
Guide) 

 
– No, we’ve seen 87% of memory peak with only 4 

warps per SM in a memory intensive kernel.  
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Part III: 

Run faster by using fewer threads 
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Fewer threads = more registers per thread 

Registers per thread: 
GF100: 20 at 100% occupancy, 63 at 33% occupancy — 3x 
GT200: 16 at 100% occupancy, ≈128 at 12.5% occupancy — 8x 
Is using more registers per thread better? 

More threads More registers 

per thread

32768 

registers 

per SM



Only registers are fast enough to get the peak 

Consider a*b+c: 2 flops, 12 bytes in, 4 bytes out 

This is 8.1 TB/s for 1.3 Tflop/s! 

Registers can accommodate it. Can shared memory? 

‒ 4B*32banks*15 SMs*half 1.4GHz = 1.3TB/s only 
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a, b, c @

8.1 TB/s
a*b+c @

1.3 Tflop/s
result @ 2.7 TB/s



Bandwidth needed vs bandwidth available 
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1.3 

TB/s 8 TB/s
177 GB/s

Global 

memory

Shared 

memory

Needed to get the 

peak

7.6x 6x
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least this fast



Fallacy: 
“In fact, for all threads of a warp, accessing the shared 
memory is as fast as accessing a register as long as 
there are no bank conflicts between the threads..” 
(CUDA Programming Guide) 
 

 
– No, shared memory bandwidth is  6x lower than 

register bandwidth on Fermi. (3x before Fermi.) 
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Running fast may require low occupancy 

• Must use registers to run close to the peak 

• The larger the bandwidth gap, the more data 
must come from registers 

• This may require many registers = low occupancy 

 

This often can be accomplished by computing 
multiple outputs per thread 
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More data is local to a thread in registers 

‒ may need fewer shared memory accesses 

Fewer threads, but more parallel work in thread 

‒ So, low occupancy should not be a problem 
49 

Compute multiple outputs per thread 

4 threads8 threads16 threads

1 output/thread 2 outputs/thread 4 outputs/thread
4x4 matrix



From Tesla to Fermi: regression? 
The gap between shared memory and arithmetic 
throughput has increased: 

‒ G80-GT200: 16 banks vs 8 thread processors  (2:1) 

‒ GF100: 32 banks vs 32 thread processors (1:1) 

‒ GF104: 32 banks vs 48 thread processors (2:3) 

Using fast register memory could help. But instead, 
register use is restricted: 

‒ G80-GT200: up to ≈128 registers per thread 

‒ Fermi: up to ≈64 registers per thread 
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Part IV: 

Case study: matrix multiply 
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Baseline: matrix multiply in CUDA SDK 

• I’ll show very specific steps for SDK 3.1, GTX480 
• Original code shows 137 Gflop/s 
• First few changes: 

– Use larger matrices, e.g. 1024x1024  (matrixMul.cu) 
• “uiWA = uiHA = uiWB = uiHB = uiWC = uiHC = 1024;” 
• Get 240 Gflop/s 

– Remove “–maxrregcount 32” (or increase to 63) 
• Not important now, but will matter later 

– Increase BLOCK_SIZE to 32 (matrixMul.h) 
• Must add #pragma unroll (see next slide); 242 Gflop/s 
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Matrix multiply example in SDK 
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float Csub = 0; 

for (int a = aBegin, b = bBegin; a <= aEnd; a += aStep, b += bStep) 

{ 

    __shared__ float As[BLOCK_SIZE][BLOCK_SIZE]; 

    __shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE]; 

 

    AS(ty, tx) = A[a + wA * ty + tx]; 

    BS(ty, tx) = B[b + wB * ty + tx]; 

    __syncthreads(); 

 

#pragma unroll 

    for (int k = 0; k < BLOCK_SIZE; ++k) 

        Csub += AS(ty, k) * BS(k, tx); 

    __syncthreads(); 

} 

int c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx; 

C[c + wB * ty + tx] = Csub; 



Baseline performance 
• One output per thread so far 
• 242 Gflop/s 

– 2 flops per 2 shared memory accesses = 4 B/flop 
– So, bound by shared memory bandwidth to 336 Gflop/s 
– We’ll approach 500 Gflop/s in a few slides 

• 21 register per thread (sm_20) 
• 67% occupancy 
• But only 1 block fits per SM 

– Can’t overlap global memory access with arithmetic 
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Two outputs per thread (I) 

In the new code we use 2x smaller thread blocks 
– But same number of blocks 

matrixMul.cu: 
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  // setup execution parameters 

  dim3 threads(BLOCK_SIZE, BLOCK_SIZE/2); //32x16 

  dim3 grid(uiWC / BLOCK_SIZE, uiHC / BLOCK_SIZE); 
 

2x fewer threads, but 2x more work per thread: 



Two outputs per thread (II) 

Define 2 outputs and do 2x more loads 
56 

float Csub[2] = {0,0};//array is allocated in registers 

for (int a = aBegin, b = bBegin; a <= aEnd; 

                     a += aStep, b += bStep) 

{ 

    __shared__ float As[BLOCK_SIZE][BLOCK_SIZE]; 

    __shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE]; 

 

    AS(ty, tx) = A[a + wA * ty + tx]; 

    BS(ty, tx) = B[b + wB * ty + tx]; 

    AS(ty+16, tx) = A[a + wA * (ty+16) + tx]; 

    BS(ty+16, tx) = B[b + wB * (ty+16) + tx]; 

    __syncthreads(); 



Two outputs per thread (III) 

Do 2x more flops and stores 
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#pragma unroll 

    for (int k = 0; k < BLOCK_SIZE; ++k) 

    { 

        Csub[0] += AS(ty, k) * BS(k, tx); 

        Csub[1] += AS(ty+16, k) * BS(k, tx); 

    } 

    __syncthreads(); 

} 

int c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx; 

C[c + wB * ty + tx] = Csub[0]; 

C[c + wB * (ty+16) + tx] = Csub[1]; 



• Now 341 Gflop/s — 1.4x speedup 
– Already above 336 Gflop/s bound 

• 28 registers 
– 2x more work with only 1.3x more registers 

• Now 2 threads blocks fit per SM 
– Because fewer threads per block, 1536 max per SM 
– Now can overlap memory access with arithmetic 
– This is one reason for the speedup 

• Same 67% occupancy 
58 

Two outputs per thread: performance 



Shared memory traffic is now lower 
• Data fetched from shared memory is now reused: 
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    for (int k = 0; k < BLOCK_SIZE; ++k) 

    { 

        Csub[0] += AS(ty, k) * BS(k, tx); 

        Csub[1] += AS(ty+16, k) * BS(k, tx); 

    } 
 

• Now 3B/flop in shared memory accesses 

• New bound: 448 Gflop/s 
– We’ll surpass this too 



Apply same idea again 
 

Shrink thread blocks by another factor of 2: 

60 

 

  // setup execution parameters 

  dim3 threads(BLOCK_SIZE, BLOCK_SIZE/4); //32x8 

  dim3 grid(uiWC / BLOCK_SIZE, uiHC / BLOCK_SIZE); 

 

Four outputs per thread (I) 



Four outputs per thread (II) 
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float Csub[4] = {0,0,0,0};//array is in registers 

for (int a = aBegin, b = bBegin; a <= aEnd; 

                     a += aStep, b += bStep) 

{ 

    __shared__ float As[BLOCK_SIZE][BLOCK_SIZE]; 

    __shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE]; 

 

    AS(ty, tx) = A[a + wA * ty + tx]; 

    BS(ty, tx) = B[b + wB * ty + tx]; 

    AS(ty+8, tx) = A[a + wA * (ty+8) + tx]; 

    BS(ty+8, tx) = B[b + wB * (ty+8) + tx]; 

    AS(ty+16, tx) = A[a + wA * (ty+16) + tx]; 

    BS(ty+16, tx) = B[b + wB * (ty+16) + tx]; 

    AS(ty+24, tx) = A[a + wA * (ty+24) + tx]; 

    BS(ty+24, tx) = B[b + wB * (ty+24) + tx]; 

    __syncthreads(); 



Four outputs per thread (III) 
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#pragma unroll 

   for (int k = 0; k < BLOCK_SIZE; ++k) 

   { 

      Csub[0] += AS(ty, k) * BS(k, tx); 

      Csub[1] += AS(ty+8, k) * BS(k, tx); 

      Csub[2] += AS(ty+16, k) * BS(k, tx); 

      Csub[3] += AS(ty+24, k) * BS(k, tx); 

   } 

   __syncthreads(); 

} 

int c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx; 

C[c + wB * ty + tx] = Csub[0]; 

C[c + wB * (ty+8) + tx] = Csub[1]; 

C[c + wB * (ty+16) + tx] = Csub[2]; 

C[c + wB * (ty+24) + tx] = Csub[3]; 



• Now 427 Gflop/s — 1.76x speedup vs. baseline! 
– Because access shared memory even less 

• 41 registers 
– Only ≈2x more registers 
– So, ≈2x fewer registers per thread block 

• 50% occupancy — 1.33x lower 
– Better performance at lower occupancy 

• 3 thread blocks per SM 
– Because fewer registers per thread block 
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Four outputs per thread: performance 



• Now 485 Gflop/s — 2x speedup vs. baseline! 
– Only 2.25 B/flop — 1.8x lower 

• 63 registers — 3x more 
– But do 8x more work! 

• 33% occupancy — 2x lower 
– Better performance at lower occupancy 

• 4 thread blocks per SM 
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Eight outputs per thread: performance 



MAGMA BLAS — up to 838 Gflop/s 

‒ 36 outputs per thread 

‒ 0.67 B/flop only — 6x lower 

‒ 33% occupancy 

‒ 2 thread blocks per SM 
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How much faster we can get? 



GFLOPS go up, occupancy goes down 
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Register use goes up, smem traffic down 

67 

0

1

2

3

4

1 2 4 8 36

B
/f

lo
p

 

outputs per thread 

0

16

32

48

64

1 2 4 8 36

re
gi

st
e

rs
/t

h
re

ad
 

outputs per thread 



Part V: 

Case Study: FFT 
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Mapping Cooley-Tukey to GPU 
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• Cooley-Tukey splits large 
FFT into smaller FFTs 

• Assume FFT fits into 
thread block 

• Small FFT are done in 
registers 

• Shuffles are done using 
shared memory 



Fewer threads – lower shared memory traffic 
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__global__ void FFT1024( float2 *dst, float2 *src ){  

  float2 a[2]; int tid = threadIdx.x; 

  __shared__ float smem[1024]; 

  load<2>( a, src+tid+1024*blockIdx.x, 512 ); 

  FFT2( a ); 

#pragma unroll 

  for( int i = 0; i < 9; i++ ) { 

     int k = 1<<i; 

     twiddle<2>( a, tid/k, 1024/k ); 

     transpose<2>( a, &smem[tid+(tid&~(k-1))], k, &smem[tid], 512 ); 

     FFT2( a ); 

  } 

  store<2>( a, dst+tid+1024*blockIdx.x, 512 ); 

}  

Two outputs per thread 
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__global__ void FFT1024( float2 *dst, float2 *src ){    

   float2 a[16]; int tid = threadIdx.x; 

   __shared__ float smem[1024]; 

   load<16>( a, src+tid+1024*blockIdx.x, 64 ); 

   FFT4( a, 4, 4, 1 );// four FFT4 

   twiddle<4>( a, threadIdx.x, 1024, 4 ); 

   transpose<4>( a, &smem[tid*4], 1, &smem[tid], 64, 4 ); 

#pragma unroll 

   for( int i = 2; i < 10-4; i += 4 ) { 

     int k = 1<<i; 

     FFT16( a ); 

     twiddle<16>( a, threadIdx.x/k, 1024/k ); 

     transpose<16>( a, &smem[tid+15*(tid&~(k-1))], k, &smem[tid], 64 ); 

   } 

   FFT16( a ); 

   store<16>( a, dst+tid+1024*blockIdx.x, 64 ); 

}  

Sixteen outputs per thread 



GFLOPS go up, occupancy goes down 
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Summary 

• Do more parallel work per thread to hide 
latency with fewer threads 

• Use more registers per thread to access slower 
shared memory less 

• Both may be accomplished by computing 
multiple outputs per thread 
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Compute more outputs per thread 
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